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Abstract: The second-order, variable-coefficient linearly homogeneous pulse effect is not 

homogeneous 
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                                      2 ( 0), ( 0) ( ),x t x t g t t D       

for the differential equation in the form 

                                                0 0(0) , (0)x x x x    

the problem of finding a solution that satisfies the initial condition is studied. 
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Well, we don't have a second-order, generally linear homogeneous coefficient with a pulse 

effect. 

                         

2

2
( ) ( ) ( ), ,

d x dx
p t q t x f t t D

dt dt
                                (1) 

                          1 ( 0), ( , ,( 0) )x t x t h t t D                                      (2) 

                        2 ( 0), ( 0) ( ),x t x t g t t D       

                                       

for the differential equation in the form 

                          0 0(0) , (0)x x x x                                                            (3) 

Let us consider the problem of finding a solution that satisfies the initial condition, where 

)(),( tqtp  and ( )f t  for the functions  0 t  defined and continuous functions, if the set has  

D  an impulse effect (1) - (3) with a graph of the 0 t  solution of the Cauchy problem the 

points ( )x t  of intersection of the graph of a ( , )t x  function, i.e. the set of 

 2( , ) , ( ) ( )t x R x t t   points, 

Wells 1  and 2  functions are such functions, 

                        
1

2

( , ) 0,

( , ) 0

x y

x y

 

 

                                                                        (4) 

Let the system be solved with one value. This condition (1) - (3) ensures that the Cauchy 

problem is unique. 

We know that if 
(1) ( )x t  and 

(2)( )x t  are a system of fundamental solutions to equation (1), then 

the general solution of equation (1) 

                        
(1) (2)

1 2( ) ( ) ( ) ( )äàðàx t C x t xC x t t                                   (5) 

(1) - (3) is the solution of the Cauchy problem with the impulse effect we are looking at, 1C  and 

2C  we have the same view that the appropriate values   are selected. 

           Let (1) be the solution of equation (3) that satisfies the initial conditions 

                       
(0) (1) (0) (2)

0 1 2( ) ( ) ( ) ( )äàðàx t C x t x tC x t                              (6) 

 let it be Then on the condition of the issue 

                       
(0) (1) (0) (2)

1 2( ) ( ) ( ) ( )äàðàC x t x t x tC t    

At the smallest value that satisfies the condition of satisfying the equation (1), equation (1) is 
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first affected by the impulse. Let's say this is the value of 

                      
(0) (1) (0) (2)

1 1 2 1 1 1( ) ( ) ( ) ( )äàðàxC tt tx t C x    . 

  The solution after the effect of the impulse is sought again in the form (5), but the arbitrary 

variables and the values   of 
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2 1 0 1

( ( ), ( )) 0,

( ( ), ( )) 0

x t x t

x t x t

 


  
     

determined from the system. (4) because of the condition 
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1 1 2 1
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1 1 2 1

1 1 0 1

2 1 0 1

( ) ( )
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C x t C x t

C x t C x t

x t x t

x t x t



 

   


   

 

is solved with one value in relation to the system 
(1) (2)

1 1 2 1 1)) ( ) (( äàðàC x t C x t x t  and 

(1) (2)

1 1 2 1 1) )) (( ( äàðàC x t C x t x t   expressions, i.e. 
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
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
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or 

                     

(1) (2)

1 1 2 1

(1) (2)

1 1 2 1

1 1

1 1

( ) ( )

( ) (

( ),

( ).)

äàðà

äàðà

C x t C x t

C x t C x t

h x t

g x t

  

 




 

 

   In this case, since 
(1) ( )x t  and 

(2)( )x t  is a system of fundamental solutions to the 

homogeneous equation in equation (1), we have the same value for the last system 1C and 2C  

the solution, 
(1)

1 1C C  and  
(1)

2 2C C  we have these unknown coefficients and values. As a 

result, (1) - (3) has a pulse effect after the first pulse effect of the Cauchy problem 

                     
(1) (1) (1) (2)

1 1 2( ) ( ) ( ) ( )äàðàx t C x t x tC x t    

we have a solution. 

  This solution lasts until the second impulse. Second impulse effect 

                     
(1) (1) (1) (2)

1 2( ) ( ) ( ) ( )äàðàC x t x t x tC t    

takes place at the smallest value that satisfies the condition of satisfying the equality. Let's say 

this is the value of 

                     
(1) (1) (1) (2)

1 2 2 2 2 2( ) ( ) ( ) ( )äàðàxC tt tx t C x      . 
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  The solution after the second impulse is sought again in view (5), but the arbitrary variables and 

the values   of are now 

                    
1 2 1 2

2 2 1 2

( ( ), ( )) 0,

( ( ), ( )) 0

x t x t

x t x t

 


  
 

determined from the system. Using conditions (2) and (4) 
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1 2 2 2
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the system 
(1) (2)

1 2 2 2 2)) ( ) (( äàðàC x t C x t x t  and 
(1) (2)

1 2 2 2 2) )) (( ( äàðàC x t C x t x t   its 

expressions are solved again with the same value, i.e. 
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Or 

                   

(1) (2)

1 2 2 2
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( ) (

( ),
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Solving another value with respect to this system and lar, we obtain these unknown coefficients 

and values. As a result, (1) - (3) has a pulse effect after the second pulse effect of the Cauchy 

problem 

                   
(2) (1) (2) (2)

2 1 2( ) ( ) ( ) ( )äàðàx t C x t x tC x t    

we have a solution. 

If we continue the process in this way, then the solution after the effect of the impulse 

                   
( ) (1) ( ) (2)

1 2( ) ( ) )) (( äàð

n

n à

nx t C x x tt C x t   , ( 2)n   

It would be appropriate to have, where and the coefficients 

                   

(1) (2)

1 2
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1 2

( ) ( )

( ) ( )
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( )
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n n n n
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C x t C x t

C x t

h x t

x g xC tt

  


  

 

is determined by solving the system, and if 

                   

(1) (2)

1 2

(1) (2)

1

1

2 2

1

2 1

( ( ), ( )) 0,

( ( )
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x

x t
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
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The values of the corresponding 
(1) (2)

1 2( ) )( () ä à nàn n ðC x t C x t x t  and 

(1) (2)

1 2( ) () )( än n à nðàC x t C x t x t   expressions that satisfy the system, as well as the value of 

( 1) (1) ( 1) (2)

1 2 ( ) ( )( ) ( ) äàðà

n n

n n n nC x t C x x t tt      

is determined from the condition of satisfying the equality. 
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